Outils pour utilisateurs

Outils du site


sunfluidh:new_numerical_methods_setup_namelist

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
Dernière révision Les deux révisions suivantes
sunfluidh:new_numerical_methods_setup_namelist [2017/09/25 16:44]
yann [Namelist Numerical_Methods (new version)]
sunfluidh:new_numerical_methods_setup_namelist [2017/09/28 18:20]
yann
Ligne 94: Ligne 94:
    * Type : Character string    * Type : Character string
    * Selection of the numerical method for solving the Poisson equation in accordance to the projection method. The solution is the pressure time increment ($\Phi= P^{n+1}-P^{n}$, Goda's method) used to update the velocity field according to the principle of the projection method (When the numerical method of Njam et al. is used to solve the Navier-Stokes equations, the pressure is solved in place of its time increment (Chorin's method). The options are :    * Selection of the numerical method for solving the Poisson equation in accordance to the projection method. The solution is the pressure time increment ($\Phi= P^{n+1}-P^{n}$, Goda's method) used to update the velocity field according to the principle of the projection method (When the numerical method of Njam et al. is used to solve the Navier-Stokes equations, the pressure is solved in place of its time increment (Chorin's method). The options are :
-     * __"Home-Multigrid-ConstantMatrixCoef"__ : Successive Over-Relaxed method (SOR) coupled with a nV-cycle multigrid method in order to accelerate the convergence. The matrix elements depend on the cell size only (constant elements). This method is directly implemented in the code ("homemade" development). No external library is required to use it. The associated parameters are set in the namelist [[HomeData_PoissonSolver_Namelist |HomeData_PoissonSolver]] .+     * __"Home-SORMultigrid-ConstantMatrixCoef"__ : Successive Over-Relaxed method (SOR) coupled with a nV-cycle multigrid method in order to accelerate the convergence. The matrix elements depend on the cell size only (constant elements). This method is directly implemented in the code ("homemade" development). No external library is required to use it. The associated parameters are set in the namelist [[HomeData_PoissonSolver_Namelist |HomeData_PoissonSolver]] .
      * __"Home-HelmholtzApproximation"__ : Poisson's operator (constant matrix elements) is approximated by a Helmholtz's operator (experimental method proposed by J.L. Guermond) - For incompressible flow only. This method is directly implemented in the code ("homemade" development). No external library is required to use it. No parameter setting is needed.      * __"Home-HelmholtzApproximation"__ : Poisson's operator (constant matrix elements) is approximated by a Helmholtz's operator (experimental method proposed by J.L. Guermond) - For incompressible flow only. This method is directly implemented in the code ("homemade" development). No external library is required to use it. No parameter setting is needed.
      * __"Home-PartialDiagonalization"__ : Partial diagonalisation of the Laplacian operator (constant elements). BEWARE : the problem must be separable. This method is directly implemented in the code ("homemade" development). No external library is required to use it. No parameter setting is needed.      * __"Home-PartialDiagonalization"__ : Partial diagonalisation of the Laplacian operator (constant elements). BEWARE : the problem must be separable. This method is directly implemented in the code ("homemade" development). No external library is required to use it. No parameter setting is needed.
-     * __"Home-Multigrid-VariableMatrixCoef"__ : SOR iterative method coupled with a multigrid method in order to accelerate the convergence. The matrix elements depend on the cell size and the density, the source term is defined from the divergence of the velocity. This method is directly implemented in the code ("homemade" development). No external library is required to use it. The associated parameters are set in the namelist [[HomeData_PoissonSolver_Namelist |HomeData_PoissonSolver]] .+     * __"Home-SORMultigrid-VariableMatrixCoef"__ : SOR iterative method coupled with a multigrid method in order to accelerate the convergence. The matrix elements depend on the cell size and the density, the source term is defined from the divergence of the velocity. This method is directly implemented in the code ("homemade" development). No external library is required to use it. The associated parameters are set in the namelist [[HomeData_PoissonSolver_Namelist |HomeData_PoissonSolver]] .
      * __"Hypre-ConstantMatrixCoef"__ : Poisson's equation is solved by the HYPRE library tools. The matrix elements are constants. The parameters of the HYPRE library are set in the namelist [[HypreData_PoissonSolver_Namelist |HypreData_PoissonSolver]] .      * __"Hypre-ConstantMatrixCoef"__ : Poisson's equation is solved by the HYPRE library tools. The matrix elements are constants. The parameters of the HYPRE library are set in the namelist [[HypreData_PoissonSolver_Namelist |HypreData_PoissonSolver]] .
      * __"Hypre-VariableMatrixCoef"__: Poisson's equation is solved by the HYPRE library tools. The matrix elements are non-constants. The parameters of the HYPRE library are set in the namelist [[HypreData_PoissonSolver_Namelist |HypreData_PoissonSolver]] .      * __"Hypre-VariableMatrixCoef"__: Poisson's equation is solved by the HYPRE library tools. The matrix elements are non-constants. The parameters of the HYPRE library are set in the namelist [[HypreData_PoissonSolver_Namelist |HypreData_PoissonSolver]] .
      
 +
sunfluidh/new_numerical_methods_setup_namelist.txt · Dernière modification: 2018/05/29 15:06 de witko